Data Science, Artificial Intelligence and Machine Learning Course in Surat

  • Home
  • /
  • Data Science, Artificial Intelligence and Machine Learning Course in Surat

Data Science Course in Surat

Data science is a multidisciplinary field that analyzes large volumes of data using mathematics, statistics, AI, and computer engineering to extract meaningful insights for businesses. By uncovering patterns and trends, data scientists can answer critical questions about past events, reasons behind them, future predictions, and potential actions to take. These insights enable businesses to make informed decisions, optimize operations, and gain a competitive edge.

Artificial Intelligence and Machine Learning Course in Surat

The Python for Artificial Intelligence and Machine Learning course is designed to provide students with a solid foundation in Python programming and its applications in the field of AI and ML. This course aims to equip students with the necessary skills to implement AI/ML algorithms, work with popular libraries and frameworks, and develop practical AI/ML solutions using Python.

Course Duration 18 Months

Daily Time 2 Hours

Eligibility For This Course

  • BCA , MCA , CE , IT , 12 Pass - Science field , Statistics field Background

Included In This Course

  • 100% Job
  • Rich Learning Content
  • Taught by Experienced Prof.
  • Industry Oriented Projects

Course Modules

Foundation of AI/ML

C, C++ And Python for Data Science
  • Introduction & Fundamentals of Python
  • Datatype in details
  • control structure & Looping
  • Function, Array & Sorting
  • object-oriented programming (oop)
  • Exception Handling
  • File Handing
  • modules and Packages
  • Regex and cla
  • os & subprocess Modules
  • web scraping

Advanced AI/ML

Mathematics of Data Science
  • Statistics and use case in data science
  • Data in Statistics & Applications of Statistics
  • Numerical, Categorical Data
  • Population vs. Sample | Definitions, Differences & Examples
  • Types of Statistics
  • Representation of Data
  • Central Limit Theorem
  • Probability of an event
  • Relationship between variables
  • Fundamentals of linear algebra
  • Time series Analysis
  • Advanced Statistics
SQL for Data Science
  • What is a Database?
  • What is SQL?
  • Intro to Server
  • CRUD operation with xampp
  • SQL Queries
  • Download and install the package
  • MySQL connector Python module
  • CRUD operations with Python MySQL connectore
NumPy and Pandas
  • What is Pandas?
  • What is NumPy?
  • Difference between Pandas and NumPy
  • Numpy And Pandas Operations for Data Science
Data Analysis Process
  • Importing libraries and datasets
  • Data Preprocessing
    • Data Wrangling & Exploratory Data Analysis
    • Data Cleaning
    • Missing Data
    • Categorical Data
    • Splitting Data into Training and Testing set
    • Feature Engineering
    • Data Normalization and Encoding techniques
    • Creating a data preprocessing Notebook
Data Visualization
  • Matplotlib & Seaborn for Data Science
    • Charts, Pie charts, Scatter and bubble charts
    • Bar charts, Column charts, Line charts, Maps
Supervised Learning Algorithms
  • Regression Algorithms - Details About Every Algorithm
    • Simaple Linear Regression
    • Multiple Linear Regression
    • Polynomial Regression
    • Supprot Vector Regression
    • Decision Tree Regression
    • Random Forest Regression
    • Bias - variance trade-off
    • L1 and L2 Regularization
    • Evaluating Regression Model Performance
    • Small Projects
  • Classification - Details About every Algorithm
    • Logistic Regression
    • K - Nearest Neighbors
    • Support Vectore Machine
    • Kernel SVM
    • Naive Bays
    • Decision Tree Classifier
    • Random Forest Classifier
    • Evaluating Classification Model Performance
    • Small Projects
Unsupervised Learning Algorithm
  • Clustering
    • K - Means clustering
    • Hierarchal clustering
    • DBSCAN
    • Recommender System
  • Association Rule Learing
    • Apriori algorithm
    • Small Projects
Deep learning - Computer Vision and Image Analysis
  • ANN - Artificial neural networks
  • Computer vision and Image Processing
  • CNN - Convolutional Neural Network
  • Data Augmentations - Image Analysis and Processing
  • Transfer Learning
  • Multiclass classification
  • Deep Convolution Model - Details About Every Model
  • Small Projects
  • Natural Language Processing - NLTK and spaCy
  • Tokenization, Stemming, Lemmatization, Corpus, Stop Words, Parts-of-speech (POS) Tagging etc..
  • Sentiment in Text Data
  • Term frequency Inverse document frequency (TF-IDF)
  • Vectorization/Word Embedding
  • Word Cloud for Text Data
  • NLP Model - Details About every Model
  • Small Projects
Reinforcement Learning algorithm
  • Markov Decision Process
  • Thompos Sampling
  • Upper Confidence Bound
Dimensionality Reduction
  • Principle Component Analysis
  • Linear Discrimination Analysis
  • Kernel PCA
Model Selections & Ensembled Techniques , Regularization Techniques
  • Random Train/Test Split
  • Resampling
  • Lasso Regression
  • Ridge Regression
  • Probabilistic Model Selection
  • Boosting and Bagging
  • Random Forest
  • XGBM
Live Projects End to End - Final Project
  • Module Assignments
  • End to End project Description with deployment using Python

Who can join?

  • Students: People studying subjects like computer science, math, or statistics might be interested in learning data science.
  • Professionals: PPeople who already have jobs, like those in finance, marketing, healthcare, or technology, might want to learn data science to improve their careers.
  • IT Professionals: People who work in the IT industry, like software engineers or data analysts, may want to learn data science to gain new skills.
  • Researchers: People who do research in fields like social sciences or economics might want to learn data science to analyze and understand their data better.
  • Business Analysts: People who work in business analysis or market research can benefit from learning data science to make better decisions using large amounts of data.
  • Entrepreneurs: People who start or run businesses can use data science to make their businesses more successful.
  • Anyone curious: Data science is interesting, and anyone who wants to explore and understand data can take a data science course.